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We examine here, by using a simple example, two implementations of the minimum error method (MEM),
a least-squares minimization for scattering problems in quantum mechanics, and show that they provide an
efficient, numerically stable alternative to Kohn variational principle. MEM defines an error-functional
consisting of the sum of the values of (HΨ - EΨ)2 at a set of grid points. The wave functionΨ, is forced
to satisfy the scattering boundary conditions and is determined by minimizing the least-squares error. We
study two implementations of this idea. In one, we represent the wave function as a linear combination of
Chebyshev polynomials and minimize the error by varying the coefficients of the expansion and theR-matrix
(present in the asymptotic form ofΨ). This leads to a linear equation for the coefficients and theR-matrix,
which we solve by matrix inversion. In the other implementation, we use a conjugate-gradient procedure to
minimize the error with respect to the values ofΨ at the grid points and theR-matrix. The use of the Chebyshev
polynomials allows an efficient and accurate calculation of the derivative of the wave function, by using Fast
Chebyshev Transforms. We find that, unlike KVP, MEM is numerically stable when we use theR-matrix
asymptotic condition and gives accurate wave functions in the interaction region.

I. Introduction

The Kohn variational principle (KVP) has been widely and
successfully1-14 used to solve problems in physical chemistry.
However, some difficulties remain.15-17 One of them is the
discrepancy between calculations using different forms of the
asymptotic wave function. One can write the asymptotic form
in terms of a phase shift, anR-matrix or anS-matrix.18 The
form of the variational principle depends on the boundary
conditions used: the one using theS-matrix differs from the
one using theR-matrix etc. One test of the adequacy of KVP
is that the values of theR-matrix, S-matrix and the phase shift
calculated variationally, must satisfy the exact relationships
connecting them. Often this is not the case, and sometimes, these
differences can be substantial: for example, theR-matrix may
give a false resonance at an energy for which the phase shift is
correct.15-17 Such discrepancies signal that the theory has
numerical instabilities.

Later work1-14 has shown that the use of theS-matrix
boundary condition

leads to stable and accurate results and this form has been widely
used in applications. TheS-matrix KVP (SKVP) forces us to
use complex arithmetic, which roughly doubles the computer
time, as compared to theR-matrix, which requires real
arithmetic. One would like therefore to have a reliable variational
principle for theR-matrix.

Some doubts about the reliability of SKVP still persist19-23

on account that KVP assumes that the second-order functional

variation term is negligible and this might not be true at certain
energies. To cure this deficiency, Rudge22 proposed an imple-
mentation of the variational principle in which the second-order
term is forced to be zero. This modification seems to resolve
the deficiencies of the old method: there are no false resonances,
and the phase shift,R-matrix, andS-matrix then satisfy (within
the numerical errors) the exact equations connecting them.
However, the additional condition makes the method less
efficient than the traditional Kohn variational principle.

In this article, we examine a method proposed by Bardsley,
Gerjuoy and Sukumar,24 which requires that the wave function
satisfies the Schro¨dinger equation, and the boundary conditions,
at a number of grid points, in a least-squares sense. In other
words, we find the wave function by minimizing the least-
squares error:

Here, [(Ĥ - E)Ψ] i is the value ofĤΨ - EΨ at a grid pointri;
Ĥ is the Hamiltonian andE is the total energy. The numberswi

are weights, for which various choices are possible. The
simplest, is to take them all equal to 1; another is to take them
large for those grid points for which high accuracy is desired,
and small for the others. In what follows we use the weights
employed in the Gauss integration method.25 With this choice,
the error (eq 2) becomes a discrete approximation to the
continuum expression,

This method involves no intrinsic approximation (such as the
neglect of the second order variation term). Furthermore, if the
minimization algorithm is numerically stable, then the procedure
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Ψ(r) ) -e-ikr + Seikr (1)

F ≡ ∑
i)1

N

wi[(Ĥ - E)Ψ] i
/[(Ĥ - E)Ψ] i (2)

F ) 〈(Ĥ - E)Ψ|(Ĥ - E)Ψ〉 (3)
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should work equally well with all boundary conditions. Using
the R-matrix boundary condition,

is then computationally advantageous, because we avoid using
complex numbers in the program.

KVP has been designed to calculate theS-matrix, or the phase
shift, or theR-matrix. Any one of these quantities provides a
complete description of the measurements performed in a
scattering experiment. There are, however, situations for which
the wave function in the interaction region is needed. One
example is photon-induced association of two colliding atoms.
This can take place through photon absorption, by two colliding
atoms, to form a bound, electronically excited state of the
diatomic molecule, followed by spontaneous emission of a
photon to bring the molecule to the bound, electronic ground
state. Or, the molecule may be formed due to emission
(stimulated or spontaneous) of a photon during the collision.
These processes play a role in the formation of molecules in
outer space; they can also be performed in the laboratory. To
calculate the rates of these processes, we must know the wave
function of the colliding atoms when they are sufficiently close
to each other to interact. In principle, KVP provides the wave
function in the interaction region but we do not know whether
this is given accurately. The least-squares method forces the
wave function to satisfy the Schro¨dinger equation everywhere,
in the asymptotic as well as the interaction region.

The MEM varies the wave functionΨ to minimize the error
F, while making sure thatΨ also satisfies the scattering
boundary conditions.24,26-32 We have experimented with two
methods for minimizing the error. In one we take as variables
the values of the wave function at the grid points and the
R-matrix and vary them untilF is minimized. To some extent
this method resembles the discrete variable representation (DVR)
of Light and co-workers.33-35 A key element in our implemen-
tation is the accurate and efficient calculation of the derivatives
of the wave function (the kinetic energy operator acting onΨ)
at the grid points. For this purpose, we use the values of the
wave function on the grid to perform a Chebyshev interpolation
of the wave function. This can be used to calculate the derivative
of the wave function very accurately, in roughlyO(N log2 N)
operations.25,36-38

In the other procedure, we represent the wave function as a
sum of Chebyshev polynomials and vary the coefficients of this
expansion and theR-matrix, to minimize the errorF. The
Chebyshev representation allows an efficient and accurate
calculation of the derivatives.

We find that, unlike KVP, the minimum error method
(MEM), with the boundary condition eq 4, is numerically stable
and it gives the wave function more accurately in the interaction
region than theS-matrix KVP (SKVP). In some of the previous
work1,11,22 the wave function in the interaction region was
represented by a polynomial in the interatomic distancer (this
corresponds to the Frobenius method for solving differential
equations). This representation is accurate whenr is small and
deteriorates asr increases. We find that increasing the order of
the “Frobenius polynomial” leads to numerical instabilities. This
prevents one from testing whether the results are converged.
The Chebyshev basis set represents the wave function well
globally, it is orthonormal and the method of computation is
stable with respect to the increase in the size of the basis set.

Here, we explain how this method is implemented and study
its numerical stability by solving a very simple problem: elastic,
s-wave scattering by an exponentially attractive potential. We

have chosen this model because it has an analytic solution for
the S-matrix and the wave function in the interaction region.
This is essential, when problems that are likely to be numerically
unstable are studied, because comparison between numerical
methods is inconclusive due to the possibility that both methods
have errors. In addition, this model has been used extensively
to test various versions of the Kohn variational principle,4,5,11

and we can use much of the previous numerical work for
comparison to the results given by the present method.

II. The Model

The Hamiltonian (in atomic units) for the s-wave scattering
of an electron by an exponential potential is

The trial wave function, which will be varied to minimize the
error F, is

The form of the asymptotic wave functionΨa is

When we use theR-matrix asymptotic wave function, eq 4,

andc0 is equal toR.
When we use theS-matrix asymptotic form, eq 1,

and c0 is the S-matrix. k is the wave vector of the incoming
electron, whose energy isE ) k2/2au.

We follow ref 15 and use the cutoff function

Its role is to switchΨt smoothly, betweenΨI andΨa, as r
increases beyond the interaction region. The cutoff also makes
(1 - f(r))Ψa(r) equal to 0 whenr is small, allowing us to impose
the correct boundary condition forr ) 0 (see below).

We have tried a variety of forms for the cutoff function and
found that, for this particular problem, the best performance
was obtained by eq 10 withR ) 1. With this choice, the cutoff
function matches the range of the exponential potential. In
calculations on other problems we get better results (i.e., faster
convergence during minimization) by using (1- f(r))Ψa(r) +
ΨI(r) with a Fermi function forf(r).

We determine the wave functionΨI(r) in the interaction
region and the coefficientc0 (which is either theR- or the
S-matrix), by minimizing the errorF. We do this by two
methods:

In one we writeΨI(r) as a linear combination of Chebyshev
polynomials with unknown coefficients{c1, ...,cN}. Introducing
the resulting expression forΨt in eq 3 makesF a quadratic
form in {c0, c1, ..., cN}. Minimizing F with respect to these
variables leads to a linear equation for them, which we solve
numerically by matrix inversion. We call this method a least-
squares method with a spectral representation and matrix
inversion (MEM-SRMI).

Ψ(r) ) sinkr + Rcoskr (4)

Ĥ ) - 1
2

d2

dr2
- e-r (5)

Ψt(r) ) (1 - f(r))Ψa(r) + f(r) ΨI(r) (6)

(1 - f(r))Ψa(r) ) ø1(r) + c0ø2(r) (7)

ø1(r) ) (1 - f(r)) sin(kr) ø2(r) ) (1 - f(r)) cos(kr) (8)

ø1(r) ) -(1 - f(r)) exp(-ikr) ø2(r) ) (1 - f(r)) exp(ikr)
(9)

f(r) ) e-Rr (10)
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The second method usesc0 and the values of the function
ΨI at the grid pointsri as unknowns. We expressF in terms of
these quantities and vary them (andc0) to minimize it. The
minimization is performed with a preconditioned conjugate-
gradient method. We call this the minimum error method with
a pseudospectral representation and conjugate gradient (MEM-
PSRCG).

III. Minimum Error Method with Spectral
Representation and Matrix Inversion (MEM-SRMI)

The trial wave function in this method is

where

The Chebyshev polynomialsTR(x) are only defined forx ∈ [-1,
1]. Because of this, the argument inTR(-1 + 2r/a)is chosen so
that whenr varies from 0 toa, (-1 + 2r/a) varies between-1
and+1. Herea is the point on ther axis where the potential
becomes zero; we have taken it to bea ) 16 au. The term
TR(-1) ensures that the interaction wave functionΨI goes to 0
like r, whenr approaches the origin, as required by the boundary
conditions for s-wave scattering.

We determine the unknown coefficientsc ≡ {c0, c1, ..., cN}
by introducing eq 11 forΨt in the expression eq 2 and
minimizing it with respect to theci’s. The expression obtained
by insertingΨt in eq 11 is a quadratic form in the coefficients
ci:

When theR-matrix asymptotic form is used, all quantities in
eq 13 are real numbers.

The mathematical structure of these equations is very similar
to that obtained in ref 15. This is not accidental: the least-
squares error functional minimized here is quadratic in the wave
function, as is the Kohn functional for theS-matrix. This makes
much of the mathematics of the two procedures very similar.
However, we use theR-matrix asymptotic form, avoiding the
need for complex quantitiessrequired in previous worksand
thus reducing the computational burden.

The minimization ofF leads to a linear equation for theci’s,
whose matrix is ill-conditioned; we invert it my using singular
value decomposition.

Previous work has found that KVP with theR-matrix
boundary condition is numerically unstable, producing large
errors in certain energy ranges. We find no such instability for
MEM-SRMI. Because KVP is stable when theS-matrix
boundary conditions are used, we have also performed MEM-
SRMI calculations withS-matrix boundary conditions and the
basis set

used by Miller et al.11 Our purpose was to test whether the
S-matrix version of MEM-SRMI has any advantages over the
version using theR-matrix. We found that within MEM, the
numerical stability of theR-matrix procedure is as good as that
for the S-matrix formulation. TheR-matrix form is preferable
because it avoids using complex numbers.

The MEM-SRMI withS-matrix boundary condition approach
has a major weakness, shared with KVP. The resulting expres-
sions are rather complicated, there are many integrals to perform
and these require a large number of operations. This is why we
have decided to develop an alternative method (see section IV).
This takes advantage of the properties of the Chebyshev
polynomials to calculate the derivatives at the grid points and
perform various matrix manipulations inN log2 N operations.
In addition, the direct matrix inversion is less efficient than the
minimization of F by an iterative method, such as the
conjugated-gradient method.

IV. Pseudospectral Representation of the Wave Function
and the Conjugate-Gradient Minimization of F
(MEM-PSRCG)

The unknown quantity in this procedure is the vector

whereΨi, i ) 2, ..., N, are the values ofΨI(r) at N - 1 grid
points ri. The boundary conditions give

Note that using the wave function at the grid points as unknown
quantities allows an easy implementation of the boundary
conditions. These reduce the number of unknown quantities;
for higher dimensionality problems, this provides a substantial
advantage over the method that uses the expansion coefficients
c1, ..., cN+1 as unknowns.

We determine the value ofx by minimizing F(x). For this
we use a conjugate-gradient procedure,37 which requires us to
calculate efficientlyF(x) and its derivatives with respect toΨ1,
..., ΨN+1, c0. The major difficulty in this calculation is the
accurate evaluation of the kinetic energy, in (Ĥ - E)ΨI, when
we only know the values ofΨI at a set of grid points.

The procedure by which we evaluateF(ΨI(2), ...,ΨI(N), c0)
and the gradient ofF

is described in Appendix C.
Normally this is all that is needed for minimizingF with

respect toΨI(2), ...,ΨI(N), c0. Unfortunately, the matrix giving
F as a quadratic form in these variables is ill conditioned; its
largest eigenvalue exceeds the smallest one by 8 orders of
magnitude. This means that without preconditioning the con-
vergence of the conjugate-gradient search will be slow. Pre-
conditioning requires that we find a similarity transformation
that turns the matrix into one whose eigenvalues are of
comparable magnitude to each other. Unfortunately, there is no
systematic and logical prescription for doing this; precondition-
ing is an art form, with various recipes offered for each specific
situation.39 The manner in which we precondition the steepest
descent direction is explained in Appendix D.

Ψt(r) ) (1 - f(r)(ø1(r) + c0ø2(r)) + f(r)∑
R)1

N

cRæR(r) (11)

æR(r) ) (TR(2r
a

- 1) - TR( - 1))
ø1(r) ) sinkr

ø2(r) ) coskr (12)

F ) ∑
R)0

N

∑
â)0

N

cR
/câMRâ +

(∑
R)0

N

cR
/NR + complex conjugate)+ D (13)

æR(r) ) rR (14)

x ) {Ψ2, ...,ΨN, c0} (15)

Ψ1 ) ΨN+1 ) 0 (16)

∇F(xk) ) {0,
∂F

∂ΨI(2)
, ...,

∂F
∂ΨI(N)

, 0,
∂F
∂c0

} (17)
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The minimization scheme iterates the vectorx ) { Ψ2, ...,
ΨN, c0} to generate a sequencex(0), x(1), ...,x(k), ... that converges
to the value that minimizesF(x). Herex(0) is a guess that starts
the iteration. The scheme generating thex(k+1) value out ofx(k)

is explained below. First, we calculate a new conjugate-gradient
directiond(k) by using

-∇F(k) is the steepest descent direction at the pointx(k), and
â(k) is calculated with the Fletcher-Reeves formula37

G(k) is the preconditioned gradient at the pointx(k), whose
evaluation is explained in Appendix D. This is where the
conjugate-gradient procedure used in the present work differs
from the standard one.37 Next, we set

and calculateR(k) by minimizing, with Brent’s method,37 F(x(k) +
R(k)d(k)) with respect toR(k).

The iteration scheme is initialized, by guessing the values of
Ψt(2), ..., Ψt(N), c0. We do this by assuming thatΨt is equal
toΨa, and by givingc0 a physically reasonable value. The
efficiency of the scheme is not very sensitive to the initial choice.

The preconditioned conjugated gradient scheme is particularly
efficient for minimizing quadratic functions of many variables.39

V. Results

A. Convergence with Respect to the Basis Set.In MEM-
SRMI we represent the wave function in the interaction region
as a sum of Chebyshev polynomials. Previous calculations,11

using SKVP, wrote it as a sum of powers ofr. In Tables 1 and
2 we show how the two methods converge with the maximum
number of polynomials used to represent the wave function,
for two different wave vectors. In both cases, the MEM-SRMI
requires a sum of 18 Chebyshev polynomials, whereas SKVP
obtains results of the same accuracy with an ordinary polynomial
of order 8 (note, however, that the accuracy involved is much
higher than that needed in applications). This is puzzling,
because a sum of Chebyshev polynomials represents more
accurately a function than an ordinary polynomial of the same
order.40 Our method requires a larger basis set because it is more
demanding: it demands that the wave function is well repre-
sented everywhere. The SKVP, on the other hand, calculates

directly theS-matrix and has no specific requirements for the
accuracy of the wave function in the interaction region. As one
can see below (Figures 2a,b), an SKVP calculation that provides
a numerically exact value for theS-matrix produces an inac-
curate wave function, whereas the MEM wave function is very
accurate.

Because we know the exact wave functionΨ we can fit it,
and various terms ofĤΨ, to find out why so many Chebyshev
polynomials are required for a good fit. Three Chebyshev
polynomials give an excellent fit of the exact wave function.
The most demanding part in the calculation ofĤΨ is the kinetic
energy d2Ψ/dr2. An accurate fit ofF requires 18 Chebyshev
polynomials, mostly because the square of d2Ψ/dr2 is present
in it and we need to represent it correctly at all grid points.

The “ordinary” power series expansion used sometimes in
SKVP becomes very inaccurate as the highest exponent in the
expansion increases (see Table 1). This happens because the
term f(r)rn does not go to zero fast enough withr, whenn is
large. Because of this, the interacting wave function spills into
the asymptotic region and this causes errors. The Chebyshev
polynomials do not have this problem because they take values
between-1 and+1.

B. Numerical Stability of MEM with the R-Matrix
Asymptotic Wave Function.Several studies15-17 have shown
that KVP with the R-matrix asymptotic wave function is
numerically unstable at certain incident energies. The use of
KVP became possible only after it was discovered4 that the
S-matrix version is numerically stable. To determine whether
MEM-SRMI and MEM-PSRCG are stable, when used with the
R-matrix asymptotic wave function, we have calculatedR with
these methods, at incident energies for which RKVP has
difficulties.15 The results of these calculations are presented in
Table 3. A plot ofR versusk is shown in Figure 1. Both MEM
methods with theR-matrix asymptotic condition have excellent
stability. This is gratifying because we no longer need to use
complex numbers in the calculation, thus cutting the computer
time by half.

C. Accuracy of the Wave Function.As we have explained
in the Introduction, in some cases one is interested in obtaining

TABLE 1: Dependence of the R-Matrix (c0) on the Order N
of the Polynomial Used To Represent the Wave Function in
the Interaction Regiona

N MEM-SRMI R SKVP Re(R) SKVP Im(R)

8 -1.72472 -1.74494 7.2080 10-6

12 -1.74517 -1.74494 1.0129 10-4

18 -1.74493 -1.74493 9.5500 10-3

19 -1.74494 -1.74490 1.3202 10-2

20 -1.74494 -1.74467 3.5728 10-2

25 -1.74494 -0.68491 82.667 10-1

30 -1.74494 -1.60068 4.6443 10-1

a The SKVP (S-matrix Kohn variational principle) results were
obtained by using the method of ref 15 to calculate theS-matrix; the
R-matrix was calculated with the exact relationship connectingS to
R. MEM-SRMI is the minimum error method with a spectral
representation and matrix inversion. The wave vector of the incident
particle isk ) 0.15 (au) and the exact value ofR is R ) -1.744 94.

d(k) ) -∇F(k) + â(k)d(k-1) (18)

â(k) ) ∇F(k)‚G(k)

∇F(k-1)‚G(k-1)
(19)

x(k+1) ) x(k) + R(k)d(k) (20)

TABLE 2: Dependence of the R-Matrix (c0) on the Order N
of the Polynomial Used To Represent the Wave Function in
the Interaction Regiona

N MEM-SRMI R SKVP Re(R) SKVP Im(R)

8 2.19872 2.20038 2.8418 10-5

12 2.20041 2.20038 1.0349 10-4

18 2.20039 2.20038 4.1457 10-4

19 2.20038 2.20038 1.1331 10-3

20 2.20038 2.20020 1.7192 10-2

25 2.20038 2.15436 6.8327 10-1

30 2.20038 0.23585 10.557 10-1

a Same as Table 1, butk ) 0.55 (au) and the exact value ofR is R
) 2.200 38.

TABLE 3: R-Matrix Values for the Incident Wave Vectors,
in Which RKVP Gives False Resonancesa

k (au) 0.28100 0.28101 0.28102 0.28103
R-exact -18.9064 -18.9159 -18.9255 -18.9350
R-KVP 14.3845 74.4587 -161.069 -60.1516
R-MEM-SRMI -18.9065 -18.9157 -18.9257 -18.9353
R-MEM-PSRCG -18.8880 -18.8086 -18.8821 -18.7409
R-SKVP -18.9066 -18.9162 -18.9257 -18.9353

a RKVP values are the results of calculations with the Kohn
variational principle for theR-matrix15 (c0). R-SKVP values were
obtained by using SKVP to calculate theS-matrix, which was then
used to obtainR-matrix values. MEM-SRMI and MEM-PSRCG are
defined in the article.
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not only theR- or S-matrix but also the wave function. Both
KVP and MEM allow the calculation of the wave function. Here
we examine how accurate these wave functions are, when
obtained in calculations that give theR- or theS-matrix very
accurately.

The exact wave functions, obtained by using theR-matrix
asymptotic condition, are plotted in Figure 2a, along with the
wave functions generated by MEM-SRMI and MEM-PSRCG.
The agreement with the exact wave functions is excellent. The
real parts of the wave functions produced by SKVP are shown
in Figure 2b. The errors of the wave functions in the interaction
region are quite large. These “numerical experiments” indicate
that SKVP can give erroneous wave functions in calculations
that give excellent results for theS-matrix.

D. Convergence of the Conjugate-Gradient Method.The
matrix inversion method is applicable only when the functional

F is a bilinear function of the unknown parameters in the trial
wave functionΨt. Often using a nonlinear dependence on
parameters is advantageous, because it provides a more flexible
representation ofΨt. In such cases it is best to determine the
parameters by a method that minimizesF directly. In addition,
even whenF is bilinear and the matrix inversion method is
applicable, the minimization by conjugate gradient is more
efficient than matrix inversion. As a rule, if matrix inversion
requires N3 operations, the conjugate gradient requiresN
operations.37

For these reasons, we have explored the possibility of
minimizing F by the conjugate-gradient method. Given the
history of numerical instabilities of KVP with anR-matrix
asymptotic wave function, we were worried that MEM with
conjugate gradient may also turn out to be unstable. We found
that this is not the case: the method converges efficiently even
for those energies for which KVP gives large errors. This
indicates that preconditioning is not obligatory, but our calcula-
tions show that it can speed up the convergence. In Figure 3
we show a typical history of the conjugate-gradient convergence
with the number of iterations. The iteration was started by
assuming that the asymptotic wave function is valid in the
interaction region and by takingR (c0 in our notation) to be
equal to 5 (the exact value at the incident wave vectork )
0.15 au is-1.744 94). These are as unreasonable starting points
as one is likely to get in any other system. We required the
iterative scheme to stop when the difference between the last
two iterated values ofF became equal to 10-5. Figure 3 shows
that both searches converge and the preconditioned method
converges faster. Although in this simple problem the advantage
of preconditioning is not great, it turns out to be essential in
more complicated problems, where it reduced the number of
iterations by a factor between 7 and 20 (depending on the
energy), and the magnitude of the reduction increases with the
number of dimensions.

VI. Conclusion

We have shown that the least-squares method (with either
matrix inversion or conjugate-gradient minimization), used with
the Chebyshev polynomials as the basis set, enables one to
obtain accurate phase shifts and wave functions for elastic
s-wave scattering. Compared to the SKVP method, the MEM
provides a better representation of the wave function in the
interaction region. Because it uses real algebra, it is faster and
more efficient in terms of the computational time and storage
than SKVP. Even though we use anR-matrix asymptotic
condition, we find no numerical instabilities.

Figure 1. Dependence of theR-matrix on the wave vector of the
incident electron, around a resonance.

Figure 2. Wave functions in the interaction region. (a) Exact wave
function (full line) and the ones obtained with MEM-SRMI (boxes)
and MEM-PSRCG (full triangles), for two incident wave vectors (k )
0.15 au andk ) 0.55 au). The high energy wave functions have more
oscillations. (b) Real part of the wave function in the interaction region
obtained by SKVP for the same incident wave vectors as in (a). The
full line is the exact wave function, and the dashed line is the one
calculated by SKVP. The high energy wave functions have more
oscillations (k ) 0.15 au andk ) 0.55 au).

Figure 3. Evolution of the functionalF (in au) as a function of the
number of iterations in the conjugate-gradient minimization. The
connected line with boxes is without preconditioning and the line with
triangles is with preconditioning.
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Appendix A. Equations Defining Mrâ, M00, M0r, N0, Nr
and D

To obtain eq 13, we insert the wave function given by eqs
11 and 12 in eq 2 forF. This gives the following equations for
MRâ, M00, M0R, N0, NR andD.

The expressions [(Ĥ - E)æ] i mean the value of (Ĥ - E)æ at
the grid pointri. Because the sums above are the Gaussian-
quadrature approximations for various matrix elements, we use
the grid points and the weights appropriate for this procedure.
These are provided by the Mathematica function Gaussian-
QuadratureWeights.41

To evaluate the expressions being summed, we need to
calculate the kinetic energy operator acting on the test function
Ψt. We have performed all the derivatives analytically using
the equation

For more demanding examples one should use the method
explained in Appendix B.

Appendix B. Calculation of F and the Derivatives in It

Trial wave function is

We are only interested in its values{ΨI(1), ...,ΨI(N + 1)} at
the grid pointsr1, ..., rN+1.

The boundary conditions require

Therefore we only need to minimizeF with respect to

The minimization algorithm starts with a guess forx and c0

and generates better values iteratively. At each iteration we start
with known (but approximate) values ofx andc0 and need to
evaluateF and∇F. Having these allows us to generate a better
approximation forx andc0.

Here we explain how we calculateF and∇F from x andc0:

The more delicate part in this calculation is the evaluation
of the derivative ofΨt from its values at the grid points. The
finite difference method of low order is inaccurate and high
order calculations are inefficient. A better method is explained
below.

We expandΨt as a sum of Chebyshev polynomialsTR.
Because the Chebyshev polynomialsTR(y) are defined only for
y ∈ [-1, 1], we perform the change of variable:

The functionΦ(y) defined by

is expanded as a sum of Chebyshev polynomials

The coefficientscR are obtained inN log2 N operations, from
knowledge ofΦ(yi) at the grid points, by using a fast Chebyshev
transform. The availability of a fast transform is the main reason
for preferring the Chebyshev polynomials over other orthogonal
polynomials.

The grid pointsyi are given by (the extrema grid)

We use this extrema grid (as opposed to the “root grid”) of
Chebyshev polynomials because it allows us to impose the
boundary conditions atr1 ) a and rN+1 ) 0 easily.

Having chosen this grid, we must use the corresponding
weights (in the expression forF)

wherepi is 2 for the first and the last terms and is otherwise 1.
These weights are computed once at the beginning of the
calculation.

To evaluate the derivatives ofΨt with respect tor (needed
for the kinetic energy), we use

and calculate dΦ(y)/dy from the expression

with dR obtained from the recursion formula:

This process involves onlyN operations and it is very accurate.
When we apply the recursion twice, we obtain the coefficients

MRâ ) ∑
i)1

N

wi[(H - E)æR] i
/[(H - E)æâ] i (A1)

M00 ) ∑
i)1

N

wi[(H - E)ø2] i
/[(H - E)ø2] i (A2)

M0R ) ∑
i)1

N

wi[(H - E)ø2] i
/[(H - E)æR] i (A3)

N0 ) ∑
i)1

N

wi[(H - E)ø1] i
/[(H - E)ø2] i (A4)

NR ) ∑
i)1

N

wi[(H - E)ø1] i
/[(H - E)æR] i (A5)

D ) ∑
i)1

N

wi[(H - E)ø1] i
/[(H - E)ø1] i (A6)

dTn(x)

dx
)

n[Tn-1(x) - Tn+1(x)]

2(1 - x2)
(A7)

Ψt(r) ) f(r) ΨI(r) + (1 - f(r))Ψa(r) (B1)

ΨI(1) ) ΨI(N + 1) ) 0 (B2)

x ≡ {ΨI(2), ...,ΨI(N)} and c0 (B3)

r ) a
2
(y + 1) (B4)

Ψt(r) ) Ψt(a2(y + 1)) ≡ Φ(y) (B5)

Φ(yi) )
c1

2
+ ∑

R ) 2

N

cRTR(yi) +
cN+1

2
TN+1(yi) (B6)

yi ) cos((i - 1)π
N ) i)1, ...,N + 1 (B7)

wi )
a

2

2

Npi
∑
m)1

N + 1 1

pm-1

Tm-1(yi-1)[-1 + cos(mπ)

m(m - 2) ] (B8)

[dΨt(r)

dr ]
i
) 2

a [dΦ(y)
dy ]

i
(B9)

[dΦ

dy ]
i
)

d1

2
+ ∑

R)2

N-1

dRTR(yi) +
dN

2
TN(yi) (B10)

dN+1 ) 0 dN ) NcN+1

dR ) dR + 2 + (2RcR + 1) R ) N - 1, ..., 1 (B11)
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of the second derivatives. The evaluation of the sum in eq B10
is performed with an inverse fast Chebyshev transform.

Appendix C. Functional Derivatives

The functionalF is given by

The derivative with respect to interaction wave function is

The only difficulty in the above equation is the calculation of
the terms involving kinetic energy. Formally, we can write

This matrix notation is useful for the derivation that follows.
However, the whole point of the derivation is to avoid ma-
trix multiplication and find an orderN procedure of the
evaluation.

We denote

and rewrite the functional derivative formula as

Next we define

and make use of

The functional derivative becomes

Because we do not want to perform matrix operations, we
rewrite this equation as

To evaluate the sum, we use the following algorithm: fast
Chebyshev transformA(i) to calculate the coefficientsaR in

Then apply the recursion

to calculatebR, R ) 2, ...,N.
Then perform the multiplication

to calculatebhR. Then use the recursion

and the multiplication

These coefficients are used to calculate the second derivative
from

The sum is performed with an inverse fast Chebyshev transform.
Note that the first and the last elements of the summations in
eqs C11 and C16 are multiplied by constants different from
those of the other summations we perform throughout the
calculation. The difference comes from the application ofD(2)T

operator.
The derivative ofF with c0 is

Appendix D. Preconditioning in the Conjugate-Gradient
Method

Experimenting with various possibilities, we have found that
we only want to precondition the gradient components∂F/∂Ψ1,
..., ∂F/∂ΨN+1 and not∂F/∂c0. For this purpose, we will drop
the ∂F/∂c0 term in ∇F ) {0, ∂F/∂Ψ2, ..., ∂F/∂ΨN, 0, ∂F/∂c0}
while preconditioning the gradient. After the selected compo-

F ) ∑
i)1

N+1

wi[(Ĥ - E)Ψt(r)] i
2 (C1)

∂F

∂ΨI(m)
) 2∑

i)1

N+1[ ∂

∂ΨI(m)
((Ĥ - E)Ψt)i]wi[(Ĥ - E)Ψt] i (C2)

[dΨt

dr ]
i
) (2a)∑

j)1

N+1

DijΨt(yj) (C3)

[d2Ψt

dr2 ]
i

) (2a)2

∑
j)1

N+1

∑
n)1

N+1

DijDjnΨt(yn) (C4)

A(i) ) wi[(Ĥ - E)Ψt(y)] i (C5)

∂F

∂ΨI(m)
) 2∑

i)1

N+1[ ∂

∂ΨI(m)
((Ĥ - E)Ψt(i))]A(i)

) 2(2a)2

∑
i)1

N+1[ ∂

∂ΨI(m)
(∑

j)1

N+1

DijDjnΨt(n) +

V(i) Ψt(i) - EΨt(i))]A(i)

) 2(2a)2

∑
i)1

N+1[(∑j)1

N+1

DijDjn

∂Ψt(n)

∂ΨI(m))A(i)] +

[2∑
i)1

N+1(V(i)
∂Ψt(i)

∂ΨI(m)
- E

∂Ψt(i)

∂ΨI(m))A(i)] (C6)

Din
(2) ) ∑

j)1

N+1

DijDjn (C7)

∂Ψt(n)

∂ΨI(m)
) δnm (C8)

∂F

∂ΨI(m)
) (2(2a)2

f(rm)∑
i)1

N+1

Dim
(2)A(i)) +

2f(rm) V(m) A(m) - 2f(rm) EA(m) (C9)

∂F

∂ΨI(m)
) (2(2a)2

f(rm)∑
i)1

N+1

Dmi
(2)TA(i)) +

2f(rm) V(m) A(m) - 2f(rm) EA(m) (C10)

A(i) ) a1 + ∑
R)2

N

aRTR(yi) + aN+1TN+1(yi) (C11)

b1 ) 0 b2 ) a1
bR + 1 ) bR - 1 + 2aR R ) 2, ...,N (C12)

bhR ) bR(R - 1) R ) 2, ...,N + 1 (C13)

c1 ) 0 c2 ) b1

cR + 1 ) cR - 1 + 2bR R ) 2, ...,N (C14)

cjR ) cR(R - 1) R ) 2, ...,N + 1 (C15)

(D(2)TA)m )
cj0

4
+ ∑

R)1

N

cjRTR(ym) +
cjN+1

4
TN+1(ym) (C16)

∂F

∂c0

) 2∑
i)1

N+1

A(i)(Ĥ-E)[(1 - f(ri)) cos(kri)] (C17)
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nents of the gradient have been preconditioned, we add back
the ∂F/∂c0 component.

Preconditioning is performed through a sequence of opera-
tions, each involving eitherN or N log2 N operations.

First, we evaluate the vector

This creates anN+1-dimensional vector in the coordinate
representation.

The pointsri are given by

These multiplications tend to diminish the values of the gradient
components toward the edge of the grid. These choices, and
the ones that follow, are the results of numerical experimenta-
tion. Although we had some qualitative arguments that have
guided us in making them, they are not worth mentioning here.

After obtainingP1, we perform a Chebyshev transform on it
and generate anN+1-dimensional vector, in the Chebyshev
space, calledP2. This is used to evaluate

We perform on this array an inverse fast Chebyshev transform,
which generates theN+1-dimensional vectorP4, in the coor-
dinate space. Its components are denoted by{P4(1), P4(2), ...,
P4(N), P4(N+1)}. They are used to evaluate

A fast Chebyshev transform ofP5 generates the arrayP6, which
is used to calculate

The inverse fast Chebyshev transform of this array generates
the vectorP8 in the coordinate space. Next we calculate the
preconditioned gradient

One can make a qualitative argument that the division of the
Chebyshev coefficients with [1+ (R - 1)2/N], R ) 1, ...,N +
1, decreases the high eigenvalues of the kinetic energy operator

and therefore makes the matrix (in the quadratic form,F) less
ill conditioned. The preconditioning does reduce the number
of iterations in the conjugated gradient search. However, this
reduction is not sufficiently dramatic to prompt us to experiment
further with better preconditioners. Applications to high dimen-
sionality, more complex problems may require a search for better
preconditioners.
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P1 ) {0, er2/8w2
∂F
∂Ψ2

, ..., erN/8wN
∂F

∂ΨN
, 0} (D1)

ri ) a
2 [cos((i - 1)π

N ) + 1] i ) 1, ...,N + 1 (D2)

P3 ) {P2(1),
1

1 +
(2 - 1)2

N

P2(2), ...,

1

1 +
(N - 1)2

N

P2(N),
P2(N+1)

N + 1 } (D3)

P5 ) {0, w2P4(2), ...,wNP4(N), 0} (D4)

P7 ) {P6(1),
1

1 +
(2 - 1)2

N

P6(2), ...,

1

1 +
(N - 1)2

N

P6(N),
P6(N+1)

N + 1 } (D5)

G ) {0, er2/8w2P8(2), ..., erN/8wNP8(N), 0,
∂F
∂c0

} (D6)
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